Temporal difference learning applied to sequential detection

نویسندگان

  • Chengan Guo
  • Anthony Kuh
چکیده

This paper proposes a novel neural-network method for sequential detection, We first examine the optimal parametric sequential probability ratio test (SPRT) and make a simple equivalent transformation of the SPRT that makes it suitable for neural-network architectures. We then discuss how neural networks can learn the SPRT decision functions from observation data and labels. Conventional supervised learning algorithms have difficulties handling the variable length observation sequences, but a reinforcement learning algorithm, the temporal difference (TD) learning algorithm works ideally in training the neural network. The entire neural network is composed of context units followed by a feedforward neural network. The context units are necessary to store dynamic information that is needed to make good decisions. For an appropriate neural-network architecture, trained with independent and identically distributed (iid) observations by the TD learning algorithm, we show that the neural-network sequential detector can closely approximate the optimal SPRT with similar performance. The neural-network sequential detector has the additional advantage that it is a nonparametric detector that does not require probability density functions. Simulations demonstrated on iid Gaussian data show that the neural network and the SPRT have similar performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal Difference Learning Applied to Sequential Detection - Neural Networks, IEEE Transactions on

This paper proposes a novel neural-network method for sequential detection. We first examine the optimal parametric sequential probability ratio test (SPRT) and make a simple equivalent transformation of the SPRT that makes it suitable for neural-network architectures. We then discuss how neural networks can learn the SPRT decision functions from observation data and labels. Conventional superv...

متن کامل

Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies

Anomaly detection is an important problem that has been popularly researched within diverse research areas and application domains. One of the open problems in anomaly detection is the modeling and prediction of complex sequential data, which consist of a series of temporally related behavior patterns. In this paper, a novel sequential anomaly detection method based on temporal-difference (TD) ...

متن کامل

A Statistical Method for Sequential Images – Based Process Monitoring

Today, with the growth of technology, monitoring processes by the use of video and satellite sensors have been more expanded, due to their rich and valuable information. Recently, some researchers have used sequential images for image defect detection because a single image is not sufficient for process monitoring. In this paper, by adding the time dimension to the image-based process monitorin...

متن کامل

Some Explorations in Reinforcement Learning Techniques Applied to the Problem of Learning to Play Pinball

Historically, the accepted approach to control problems in physically complicated domains has been through machine learning, due to the fact that knowledge engineering in these domains can be extremely complicated. When the already physically complicated domain is also continuous and dynamical (possibly with composite and/or sequential goals), the learning task becomes even more difficult due t...

متن کامل

Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images

Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1997